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1 | Thesis Overview

1.1 Contributions and outline of the thesis

The thesis brings contributions in two fields, automated malware

detection and classification algorithms. The main target of my

research was to build from the grounds-up a state of the art au-

tomatic malware detection framework based on machine learning

algorithms. The hard constraint of having a zero false-positive

and the performance required by a system to be used in practical,

real-life scenarios made this project very challenging. After ob-

taining good results using perceptron-derived and SVM-related

algorithms I concentrated my research on improving the perfor-

mance of a newly introduced algorithm called Probabilistic Vector

Machine. While trying to bring PVM into the competition with

the best hyperplane classifiers I developed a distributed solver

for the feasibility system in the initial formulation and then I

simplified the entire model by reducing it to a single LP system.

The main contributions are summarized as follows:

• Chapter 1 of the thesis is an introductory chapter. It starts

with a short survey of the current research context and con-

tinues with an introduction in into the malware detection

research field. It defines the major malware categories such

as: worm, virus, Trojan horse, Rootkit, Bot, Spyware; the

major vectors of infection: Exploitation of vulnerabilities in

server software, Drive-by downloads, Social engineering ; fol-

lowing is a short overview of the process of malware analysis.
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The second part of the chapter is dedicated to familiarize

the reader with some important supervised classification al-

gorithms: Decision trees, The Perceptron, Artificial neural

networks and Support Vector Machines.

• The design and implementation of Dronezilla, an automatic

malware behavior extraction environment implemented with

real-hardware. This system was the corner-stone in the de-

velopment of features used for detecting malware using Ma-

chine Learning. Details in Chapter 2.

• The development of both static and behavioral malware-

related features for automated malware detection. Details

in Chapter 3, Section 3.1.

• The design of the perceptron-derived algorithms used to-

wards achieving a very low false positive rate when classi-

fying malware. Details in Chapter3, Section 3.3.

• The design of experiments using classification algorithms

for malware detection; the methodology and results of us-

ing a cascading ensemble of one-sided perceptrons and then

one-sided SVMs are detailed in Chapter 3, Section 3.4 and

Section 3.5.

• Experiments and practical optimizations for scaling-up pur-

poses in the malware detection framework. Details in Chap-

ter 3, Section 3.6.

• Designing a proactivity study on the resistence of auto-

mated detection models against malware evolution over a

period of one year. Methodology and results in Chapter 4.
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• For solving the system introduced by the original formula-

tion of the PVM algorithm, an adaptable, general purpose

distributed feasibility solver is introduced. Details in Chap-

ter 5, Section 5.2.

• The implementation of a distributed feasibility solver for

PVM based on the Twister map-reduce framework. Details

on choosing algorithm parameters and results are presented

in Chapter 5, Sections 5.2.4–5.2.9.

• A simplified model for the PVM algorithm is introduced.

Reducing the statistical underlying model to a single LP

system, allows PVM to compete with state of the art hy-

perplane classifiers. Details on the new model in Chapter

5, 5.3.

• Practical proof that PVM with the new statistical model is

a competing hyperplane classification algorithm is given by

providing comparrisons with state of the art algorithms on

well known and artificial datasets. Details in Chapter 5.,

5.3.5–5.3.6.

1.2 Dronezilla. Malware behavior extraction.

Among other type of features, in our malware detection system,

we needed to record the dynamic behavior of malware. This

means, that every sample needed to be executed to manifest itself

as it was intended and the system should record it’s behavior as

features. For this type of task, historically, in the anti-malware

industry, virtual machines were employed. Because most modern

malware families have built-in mechanisms to establish that they

are being run on a virtual machine, in such an environment, they
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manifest different behavior, such as: immediatelly terminating,

pausing for a very long time, displaying a message-box signaling

that the virtual machine was detected. Knowing this, we needed

to create a system that would automatically execute and record

real malware behavior.

Having automation and reliability set as our primary goals,

we developed a framework environment based on real hardware.

Within this environment one is allowed to automate most of the

malware analysis tools which require accurate behavior of mal-

ware samples, which cannot be obtained using operating systems

in virtual machines.

Among some of the most difficult constraints we faced while

building this system was the speed of reverting from the infected

operating system to clean snapshots or even to a brand new oper-

ating system. We overcame this step by booting the client/slave

machines over network from a repository server that managed

the hard-drive allocation. Moreover, the cloning, snapshotting

and destroying hard disk images logic was created on top of the

ZFS File System, which ran as a Free BSD kernel module. This

also gave us a negligible delay time from shutting down one op-

erating system to booting from a new hard-drive. The system

also had to be scalable, secure and easy to attend. We discuss

some of the interesting challenges we confronted with in achieving

these tasks such as: scripting language controlled Power Distri-

bution Units, video monitoring of client machines over network or

private networking between each drone and its managing server.

Throughout the rest of the thesis, the term drone will define a

real hardware machine that is used to execute jobs scheduled by

a managing server.

We present below step by step our progress in developing
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this framework including the choice of existing technologies, the

needed changes and usage scenarios that range from modifying

network interface card firmware, redesigning the AoE transmis-

sion protocol and drivers for every supported client operating

system, to designing a web application for user interaction.

As the number of malware samples is vertiginously increasing

by each day, the need for automated testing and information ex-

tracting environments for malware analysis is tremendous. There

is a need to construct highly automated tools that will only re-

quire the human factor’s attention for a very small number of

samples, those that actually raise problems to the anti-malware

solution in question. One of the existing implementation alter-

natives is represented by the use of existing virtual machines,

offering a very similar environment to the real world hardware,

although this exhibits more problems than it solves. The most

critical problem is the virtual machine detection mechanisms that

are built inside most of the modern malware packages. Besides

the main intended purpose of this system –extracting malware

behavior features– a side-effect of it’s construction was the pos-

sibility to use it for general application performance testing. For

a system constructed using this technology to be used for appli-

cation performance testing it needs to have a linear speed penalty

compared to the real hardware. As an example in this direction,

consider more virtual machines (VM) running on the same hard-

ware. If one VM is consuming more CPU, the rest of them could

hang for a while. This leads to test cases that are hard to repro-

duce.

All of these limitations motivated us to construct a system and a

framework whose purposes are:

• Real hardware usage. No virtual machines
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• 100% automation of job running

• Limited human factor intervention

• Having a throughput similar to virtual machine technology;

• Increased speed in switching between an infected operating

system and a clean one, a speed comparable with a virtual

machine revert-to-snapshot

With these specifications in mind we constructed what we called

Dronezilla, a master-slave system, based on existing technologies

from the UNIX world, capable of being an environment which

can automate the behavior analysis of malware samples and the

quality assurance of software products. From our knowledge the

system is a novelty in the field, raising the bar for the current

techniques.

The most important technologies used in implementation:

• ZFS File System [1] – running as a FreeBSD kernel module

– who made possible the creation of a remote repository

with OS images, offering us very fast operations like cloning

and snapshotting.

• The AoE and iSCSI network boot protocols are used here

for loading operating system images from the remote reposi-

tory on the machines attached to the system. The machines

are called drones because they lack hard-drives.

• The video monitoring technologies, in our case being DKVM

and VNC, through which we can monitor the client ma-

chines.

Some of the technologies used throughout building this system

needed various modifications, without which the realization of
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Dronezilla, as we planned it to be, was impossible. Here we in-

clude the modification of gPXE boot-loader firmware that we

flashed into the network cards, the modification of ISC DHCPD

Unix daemon or the modifications brought to the Windows AoE

driver.

Dronezilla’s core framework is formed of a series of daemons

and scripts which are running the background logistics of the

repository servers, plus a web application designed for managing

and using the server. Python was the chosen programming lan-

guage due to its productivity gains and lower development time.

1.3 Malware classification

Our aim is to overcome some of the big problems that the an-

tivirus technologies face nowadays. Ultimately, these problems

are expressed in terms of generic detection of malware, while get-

ting as few false positives as possible.

In this chapter, we present a framework for malware detection

aiming to get as few false positives as possible, by using a simple

and a multi-stage combination (cascade) of different versions of

the perceptron algorithm [8].

Furthermore results with a feature mapped perceptron and

a kernelized perceptron are presented. Ultimatelly, a cascade

one-sided Support Vector Machines (SVMs), combined with fea-

ture selection based on the F1 and F2 scores, is trained on a

medium-size dataset consisting of clean and malware files. Cross-

validation is then performed in order to choose the right values for

parameters. Finally, tests are performed on another, non-related

dataset. The obtained results were very encouraging.
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1.3.1 Features for Machine Learning

For every binary file in the training and test datasets, a set of

features/attributes was computed, based on many possible ways

of analyzing a malware, for instance:

• Behaviour characteristics in protected environments. From

the Dronezilla environment, we observed and monitored

behavior characteristics of malware. These characteristics

were afterwards introduced in a proprietary runtime emu-

lation engine that is able to run the malware sample inside

a protected environment and extract the features for every

such sample in a matter of miliseconds.

• File characteristics from the PE format point of view. Ma-

licious binary executables are regularly modified in order to

make them smaller, packed and obfuscated. We monitor

different techniques such as: abnormal sizes of each binary

code section, which is very important; the number of of

sections; the compiler that was used to generate the binary

code; the presence of TLS data(code that is executed before

the main thread is started); the number of DLL’s references

for dynamic linking; the presence of certain resource infor-

mation embedded inside the PE executable, etc.

• File format from a geometrical point of view. For a trained

eye, actually seeing a new binary malware, it is very easy

to say if something is suspicious. We noted down all the

abnormalities that we observed when looking at a binary

and used them as features for the learning framework.

• File packer, obfuscator or protector type. An important

practical observation was that most of the malware code
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nowadays comes packed, obfuscated or protected(i.e. pro-

tected from manual step by step debugging). We trans-

formed some of the static signatures detecting known pack-

ers/obfuscators/protectors into features contributing in the

identification of malware.

• Package installer type.

• File content information retrieved from imports, exports,

resource directory or from different strings that reside in

the data section of the file.

• Compiler specific features.

The total number of file attributes that we defined –excluding

those related to imported functions– was around 800, but for the

scope of this thesis only 308 boolean attributes were used.

1.3.2 Datasets and algorithms

We used three datasets: a training dataset, a test dataset, and a

“scale-up” dataset. The number of malware files and respectively

clean files in these datasets is shown in the first two columns of

Table 1.1. As stated above, our main goal is to achieve malware

detection with only a few (if possible 0) false positives, therefore

the clean files in this dataset (and also in the scale-up dataset) is

much larger than the number of malware files.

The clean files in the training database are mainly system files

(from different versions of operating systems) and executable and

library files from different popular applications. We also use clean

files that are packed or have the same form or the same geomet-

rical similarities with malware files (e.g use the same packer) in

order to better train and test the system.
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Table 1.1: Number of files and Unique Combinations of Feature
Values in the Training, Test, and Scale-Up Datasets.

Files Unique combinations

Database malware clean malware clean

Training 27475 273133 7822 415

Test 11605 6522 506 130

Scale-up approx. 3M approx. 180M 12817 16437

The malware files in the training dataset have been taken

from the Virus Heaven collection(henceforth denoted VH). The

test dataset contains malware files from the WildList (henceforth

denoted WL) collection and clean files from different operating

systems (other files that the ones used in the first database).

The modified Perceptron algorithms that we used are fully

described in the thesis Section 3.3. We present here only the im-

portant training subroutine of One-Sided Perceptron 1 algorithm

that helped with lowering the False Positive rate.

Algorithm 1 One-Sided Perceptron

NumberOfIterations← 0
MaxIterations← 100
repeat

Train (R, 1, -1)
while FP(R) > 0 do

Train (R, 0, -1)
end while
NumberOfIterations← NumberOfIterations+ 1

until (TP(R) = NumberOfMalwareF iles) or
(NumberOfIterations = MaxIterations)

For what we call the mapped one-sided perceptron, we will

use the previous perceptron algorithm, except we first map all
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our features in a different space using a simple feature generation

algorithm, presented in the thesis as Algorithm 3.

Finally, we used the same one-sided perceptron (Algorithm 1),

but in the dual form [3] and with the training entry mapped into

a larger feature space via a kernel function K [9]. The resulting

kernelized one-sided perceptron is the Algorithm 2 given below.

Algorithm 2 Kernelized One-Sided Perceptron

for i = 1 to n do
∆i ← 0
αi ← 0

end for
for i = 1 to n do

if (labeli ×
∑n
j=1(αj ×K(i, j))) ≤ 0 then

∆i ← ∆i + labeli
end if

end for
for i = 1 to n do
αi ← αi + ∆i

∆i ← 0
end for

1.3.3 Results with Perceptron algorithms

Cross-validation tests for 3, 5, 7, and 10 folds were performed for

each algorithm (COS-P, COS-P-Map, COS-P-Poly and COS-P-

Radial) on the training dataset. For each algorithm, we used the

best result from maximum 100 iterations.

The cross-validation results found in Table 1.2 show that al-

though the COS-P-Poly4 algorithm has the best malware detec-

tion rate (i.e sensitivity) on training dataset, the number of false

alarms produced by this algorithm is much higher than the one
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Table 1.2: 5-fold Cross-validation Results on the Training
Dataset.

Algorithm TP FP SE SP ACC

COS-P 1342 5 85.83% 93.98% 86.24%

COS-P-Map-F1 1209 18 97.25% 74.09% 95.97%

COS-P-Map-F2 1212 17 96.98% 77.50% 95.83%

COS-P-Poly2 1518 23 97.05% 71.57% 95.76%

COS-P-Poly3 1532 29 97.95% 64.10% 96.25%

COS-P-Poly4 1533 31 98.01% 61.69% 96.18%

COS-P-Radial 1153 33 97.42% 63.37% 95.70%

obtained for the COS-P algorithm. (Note that the number of

files that are actually detected is much higher since the algo-

rithm works with unique combinations of features and not with

actual files.)

Table 1.3: Results on the Test Dataset.

Algorithm TP FP SE SP ACC

COS-P 356 3 68.73% 97.46% 74.06%

COS-P-Map-F1 356 2 83.76% 96.97% 85.54%

COS-P-Map-F2 357 2 83.22% 97.14% 85.17%

COS-P-Poly2 455 9 87.84% 92.37% 88.68%

COS-P-Poly3 466 19 89.96% 83.90% 88.84%

COS-P-Poly4 465 20 89.77% 83.05% 88.52%

COS-P-Radial 264 19 89.13% 86.92% 88.68%

The results for the test dataset (Table 1.3) show that both

COS-P-Map-F1 and COS-P-Map-F2 algorithms produce good re-

sults, with a good specificity (83%) and very few (2) false posi-

tives, even if the malware distribution in this dataset is different
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from the one in the training dataset.

From the technical point of view, the most convenient algo-

rithms are the cascade one-sided perceptron (COS-P) and its ex-

plicitly mapped version (COS-P-Map).

1.3.4 Results with One-Sided SVMs

We first trained the classical SVM algorithm [2, 3] on the VH

dataset (Tables 1.4 and 1.5). The denotations for the different

versions of the SVM algorithm correspond to those introduced in

the precedent subsection. The test results on the WL dataset, as

shown in Table 1.7 provided a better detection rate compared to

all Perceptron algorithms mentioned in the previous subsection.

However, the number of false positives is much higher now. This

why we opted for the one-sided version of the SVM classification

algorithm, henceforth abbreviated OS-SVM. Technical details for

running OS-SVM are given in Section 3.5 of the thesis.

Training results with OS-SVM are shown in Tables 1.6. The

test results obtained by using this method were very encouraging

regarding the false positive rate, but not the true positive rate,

as it can be seen in Table 1.8.

We applied the cascading methodology for One-Sided SVM in

conjunction with each kernel function presented in the previous

subsection. The test results, given in Table 1.9, show an increased

detection rate and very few false positives compared to both those

obtained by the cascade one-sided perceptrons (Table 1.3) and the

non-cascade one-sided SVMs (Tables 1.7 and 1.8).

The main goal was to build a machine learning framework that

generically detects as much malware samples as possible, with the

tough constraint of having a zero false positive rate. Using just

Perceptron algorithms, we were very close to our goal, although
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Table 1.4: 5-fold Cross-validation, SVM Results on the Training
(VH) Set.

Algorithm TP FP SE SP ACC

SVM-Map-F1 6149 68 97.46% 74.81% 96.53%

SVM-Map-F2 6179 74 97.66% 76.58% 96.66%

SVM-Poly2 7728 94 97.64% 70.72% 96.59%

SVM-Poly3 7741 81 97.36% 71.58% 96.47%

SVM-Poly4 7744 78 96.99% 69.05% 96.14%

SVM-Radial 7747 75 97.93% 76.92% 97.10%

Table 1.5: 10-fold Cross-validation, SVM Results on the Training
(VH) Set.

Algorithm TP FP SE SP ACC

SVM-Map-F1 6159 58 97.55% 78.11% 96.76%

SVM-Map-F2 6173 80 97.67% 75.23% 96.58%

SVM-Poly2 7729 93 97.54% 70.19% 96.50%

SVM-Poly3 7801 21 96.17% 83.06% 95.97%

SVM-Poly4 7813 9 95.41% 80.85% 95.33%

SVM-Radial 7750 72 97.84% 77.14% 97.05%

Table 1.6: 5-fold CV, OS-SVM Results on the Training (VH) Set.

Algorithm TP FP SE SP ACC

OS-SVM-Map-F1 743.4 1.6 59.78% 97.83% 61.87%

OS-SVM-Map-F2 657.4 1 52.56% 98.72% 55.27%

OS-SVM-Poly2 814.2 0.6 52.04% 99.27% 54.41%

OS-SVM-Poly3 790.2 1.4 50.5% 98.31% 52.9%

OS-SVM-Poly4 909.6 2.8 58.14% 96.62% 60.07%

OS-SVM-Radial 701.6 0.6 44.84% 99.27% 47.57%
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Table 1.7: SVM Results on the Test (WL) Dataset.

Algorithm TP FP SE SP ACC

SVM-Map-F1 405 10 95.29% 84.62% 93.88%

SVM-Map-F2 401 10 93.47% 85.51% 92.37%

SVM-Poly2 490 23 96.84% 82.17% 93.86%

SVM-Poly3 503 35 99.41% 72.87% 94.02%

SVM-Poly4 506 89 100.00% 31.01% 85.98%

SVM-Radial 486 18 96.05% 86.05% 94.02%

Table 1.8: OS-SVM Results on the Test (WL) Dataset.

Algorithm TP FP SE SP ACC

OS-SVM-Map-F1 302 0 71.06% 100% 74.9%

OS-SVM-Map-F2 311 0 72.49% 100% 76.31%

OS-SVM-Poly2 321 0 63.44% 100% 70.87%

OS-SVM-Poly3 324 0 64.03% 100% 71.34%

OS-SVM-Poly4 334 0 66.01% 100% 72.91%

OS-SVM-Radial 330 0 65.22% 100% 72.28%

Table 1.9: Results for Cascade One-Sided SVMs on the Test (WL)
Dataset.

Algorithm ITER TP FP SE SP ACC

COS-SVM-Map-F1 181 283 0 66.58 100 71.02

COS-SVM-Map-F2 362 317 2 73.89 97.1 77.1

COS-SVM-Poly2 276 362 3 71.54 97.67 76.85

COS-SVM-Poly3 157 421 16 83.2 87.59 84.09

COS-SVM-Poly4 593 375 4 74.11 96.89 78.74

COS-SVM-Radial 625 407 13 80.43 89.92 82.36
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we still have a non-zero false positive rate. In order for this

framework to become part of a highly competitive commercial

product, a number of deterministic exception mechanisms have

to be added.

As of now, malware detection via machine learning will not re-

place the standard detection methods used by anti-virus vendors,

but will come as an important addition to them. Any commer-

cial anti-virus product is subject to certain speed and memory

limitations, therefore the most reliable algorithms among those

presented here are the cascade one-sided perceptron and and its

explicitly mapped variant.

Since most anti-malware solutions manage to have a detection

rate of over 90% according to AV-TEST [7], it follows that an

increase of the total detection rate of 3%−4% as the one produced

by our algorithms, is very significant.

1.4 Proactivity study on malware detection

In this study we use the representation of data described above

to train multiple machine-learning algorithms. We used a com-

bination of different approaches in order to obtain results with

different characteristics, such as: algorithms that exhibit a very

big detection rate with the downside of having a high rate of

false positives, algorithms that have very strict policy in restrict-

ing false positives but with a lower the detection –true positive–

rate or methods that have both high true positive and true neg-

ative rate, but in order to train them on large scale databases,

a huge amount of computational resources is needed. We have

also used ensembles of multiple trained models such as voting or

cascading schemes.

With this experiment we tried to give the community the an-
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swer to the following question: “What is the correlation between

the size 1 of a database and the power of the extracted models to

pro-actively detect malware for a limited period of time (14 weeks

in this case)”. We used a large amount of data and extracted a

database of feature vectors for every file. To our knowledge, no-

body else in the literature ever attempted to present results using

a database of such size. We used our own implementations of the

algorithms in order to sustain this quantity of data and studied

the resistance of the trained models in time against the evolution

of malware strains.

We have presented several machine learning methodologies for

distinguishing between malware and clean files and used them to

study the power of every algorithms against the ever-changing

characteristics of malware in-the-wild. We have shown multi-

ple methods with different characteristics. Some of them work

on a shorter time-span giving good results, like for example the

Cascaded Ensemble and we have shown methods that are resis-

tant in time, like the OneSide Perceptron. All of the presented

algorithms are suited for real life practical use as long as one can

respect the characteristics of the method and exploit it’s bene-

fits. Our study showed that after approximately one month, the

malware characteristics have visible changes and we recommend

to replace the production models with newly trained ones.

1.5 Improving the PVM algorithm

This chapter outlines the progress done starting from the original

PVM formulation by my coleague Andrei Sucila in [10]. The

original PVM formulation is presented in Section 5.1 of the thesis.

1The size of the database here is an indicator of the diversity of the
malware samples involved.
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The main target was to scale-up the PVM algorithm in order to

deal with larger quantities of input data. Section 5.2 of the thesis

describes the efforts in optimizing the solver of the feasibility

system needed for PVM training. A simpler reformulation of the

PVM system allows for smaller traning times – to solve the PVM

problem, a single linear programming system needs to be solved.

All the steps that lead to this point are described in Section 5.3.

λ- σ-

λ+ σ+

(w, b)

E- E+

Figure 1-1: Induced distance distributions. The hyperplane is
sought such as to minimize the maximum between the red and
blue areas, which correspond to the FN and FP probabilities.
Equivalently, the hyperplane has to maximize the minimum be-
tween λ+ and λ−.

The PVM optimization problem is equivalent to solving:
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minmax{ σ+

E+
, σ−
E−
}

b+ 1
|S+|

∑
xi∈S+

< w, xi > = E+

−b− 1
|S−|

∑
xi∈S−

< w, xi > = E−

E+ ≥ 1, E− ≥ 1

| < w, xi > +b− E+| ≤ σi+,∀xi ∈ S+

| < w, xi > +b+ E−| ≤ σi−,∀xi ∈ S−
σ+ = 1

|S+|−1
∑
xi∈S+

σi+

σ− = 1
|S−|−1

∑
xi∈S−

σi−

(1.1)

Note that, besides the objective function, system (1.1) uses

only linear equations.

A few important properties of the model thus far are that

it has a direct connection to the generalization error embedded

in the objective function and that it is likely to be resillient to

outliers, as it is based on a statistical model of the training data

and, as such, has a natural mechanism of dealing with outliers.

Also note that, because of the way the system is built, it does

not require for S+ and S− to be linearly separable, as would a

hard margin SVM, and does not require special treatment for

classification errors, thus avoiding the introduction of a tradeoff

term in the objective function.

Replacing the scalar products in system (1.1) with a kernel

function, we obtain the PVM model that uses kernel functions

when separability is difficult in the original space.
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min max{ σ+

E+
, σ−
E−
}

b+
∑m
i=1 [αi · 1

|S+|
∑
xj∈S+

K(xi, xj)] = E+

−b−
∑m
i=1 [αi · 1

|S−|
∑
xj∈S−

K(xi, xj)] = E−

|
∑
xi∈S αiK(xi, xj) + b− E+| ≤ σj+ , ∀xj ∈ S+

|
∑
xi∈S αiK(xi, xj) + b+ E−| ≤ σj− , ∀xj ∈ S−
1

|S+|−1
∑
xi∈S+

σi+ = σ+
1

|S−|−1
∑
xi∈S−

σi− = σ−

σ+ ≤ t · E+

σ− ≤ t · E−
E+ ≥ 1, E− ≥ 1

(1.2)

1.5.1 Distributed PVM solver

Because of the high computational demands of the initial solver

for PVM, we introduce a distributed solver based on the Distaince

Weighted Projection Operator. Details on DWPO are given in

Section 5.3.2 of the thesis. The solver is implemented using the

Twister [5] map-reduce [4] framework.

For machine learning algorithms that need multiple itera-

tions over the same static data, the most important feature that

Twister introduces is the ability to run multiple iterations on the

same data. That is, once the mappers and the reducers are con-

figured with pre-computed data, each computing unit keeps their

portion of the matrix in memory at all times. Because there is

no time dedicated for loading data at each iteration and all com-

munication between nodes is done via the pub/sub messaging

bus and not through files from a virtual file-system, the cluster

resources are used at full capacity.

A high-level overview of the Twister programming model is
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Figure 1-2: Twister high level programming model
2Source: http://www.iterativemapreduce.org
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described in Figure 1-2. As it can be seen, Twister does not use a

virtual file-system to load data from. The partitioning and copy-

ing of the static data is done via Unix Bash scripts. If this solver

weren’t such a specific task, the lack of the distributed virtual

file-system, could be considered a flaw in a Big Data processing

framework, but because we only load all the static data once and

use it multiple times, this is not a problem here.

The steps taken when training a new PVM model are:

• Transform all nominal attributes in numeric ones

• Normalize dataset

• Copy traning dataset on all machines in the cluster

• Launch Twister job that for static data pre-processing. This

task signals each computing node (the mappers) to load the

dataset and pre-compute the slice of the Gram Matrix that

corresponds to this node. The Gram Matrix here contains

the distances from each data record to all others.

• Launch Twister job to train using the technique described

in Section 5.2.2 of the thesis. Each mapper loads one block

of data and in each iteration, when signaled, computes the

update for the current block. The update from the mappers

is transmitted to the reducers which just pass it further to

the final Reduce stage, called Combiner. The Combiner

runs on the main machine and is responsible for making

the global update and send it to all mappers through the

pub/sub bus. The mappers are signaled to start working

again.
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1.6 PVM as a Single LP System

The classifier described thus far is obtained as the result of solving

a series of linear feasibility problems. This approach allowed pre-

liminary validation of the concept, but when dealing with prac-

tical datasets, several problems became immediately apparent:

1. The final linear feasibility problems lead to ill–conditioned

systems for which the feasible region consists of a single line

in the solution space.

2. The precision can suffer badly. Especially in kernel prob-

lems, where small variations in the objective value (to the

order of 10−6) can lead to large variations in accuracy (to

the order of 2%).

3. The resolution time can be large. Even with hot starts, the

linear solvers can take very long to solve the linear feasibility

problems.

While items 2 and 3 can be separately dealt with, kernel prob-

lems would still tend to take very long to solve. This is because

a large number of linear feasibility problems would have to be

resolved for the precision to be high enough to offset the dropoff

in accuracy.

To resolve these problems, a better mathematical approach

was required. The idea is to show that the problem has an equiv-

alent linear fractional formulation and then convert the linear

fractional program to a simple linear program. The steps needed

to reach the final form of the Single LP PVM accompanied by

proofs are detailed in Section 5.3 of the thesis. The final model

that uses kernel functions has the following form:
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min 1

|S+|−1
∑
i∈S+

σi+ + 1
|S−|−1

∑
i∈S−

σi−

|
∑m
j=1 αj(K

j
+ −K(xi, xj))| ≤ σi+,∀xi ∈ S+

|
∑m
j=1 αj(K

j
− −K(xi, xj))| ≤ σi−,∀xi ∈ S−∑m

i=1 αi(K
i
+ −Ki

−) = 1

(1.3)

Note that the hyperplane offset no longer appears among the

variables of this system. It can, instead, be found at the end by

resolving the equation σ+

E+
= σ−

E−
.

Problem (1.3) is a linear program that can be solved with one

of the many available solvers. It is important to note that it no

longer leads by default to ill conditioned systems. Also, solving

this will give a solution to the original PVM problem without any

loss in accuracy.

1.6.1 Results on UCI ML Datasets

PVM has been tested on a series of data sets originating from

the University of California–Irvine Machine Learning (UCI ML)

database. The sets used for testing are the ones which have also

been used in [6] and are decribed in Table 1.10.

Tables 1.11 and 1.12 show the results of comparing PVM with

the LSTSVM, TSVM, GEPSVM and PSVM classifiers. For PVM

the selection of the kernel and bias parameters was done using a

grid search. Each combination of parameters was evaluated us-

ing 5 tenfold cross-validations. The final evaluation of the best

parameters selected in this manner was done by running 100 ten-

fold cross-validations, equivalent to 1000 runs, and recording the

average and standard deviation of these 1000 runs. The results

for the other classifiers have been taken from [6] where the same

tenfold testing procedure is used, albeit using a slightly lower
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Dataset Records Features Positive Negative

Hepatitis 156 19 32 123
WPBC 199 34 47 151

Sonar 209 60 111 97
Heart-statlog 270 14 150 120

Heart-c 303 14 139 164
Bupa Liver 345 7 200 145
Ionosphere 351 34 126 225

Votes 434 16 267 167
Australian 690 14 307 383

Pima-Indian 768 8 500 268

Table 1.10: UCI ML datasets description

Dataset PVM LSTSVM TSVM GEPSVM PSVM

Hepatitis 87.151 84.28 83.73 79.28 78.57
WPBC 78.853 81.66 82.22 80 80.55

Sonar 86.995 90.52 90 80 90
Heart-statlog 77.548 85.18 85.84 86.52 70.74

Heart-c 77.119 83.79 82.17 70.37 70.68
Bupa Liver 73.021 74.84 75.15 68.18 74.84
Ionosphere 92.903 96.17 96.17 84.41 95

Votes 96.54 96.19 95.95 94.5 95.95
Australian 83.623 76.17 75.8 69.55 73.97

Pima-Indian 77.133 75.33 75.74 75.33 76.8

Table 1.11: Comparison between PVM, LSTSVM, TSVM,
GEPSVM, PSVM on the UCI ML datasets on the RBF kernel.
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Dataset PVM LSTSVM TSVM GEPSVM PSVM

Hepatitis 0.94 10.24 6.25 5.2 0.24
WPBC 0.64 6.95 6.82 5.97 3.92

Sonar 1.37 7.36 7.5 5.97 7.21
Heart-statlog 1.84 5.23 6.52 7.36 6.86

Heart-c 1.21 5.87 5.21 8.90 7.66
Bupa Liver 0.92 6.85 6.51 6.2 9.04
Ionosphere 1.36 3.68 3.9 6.2 4.17

Votes 0.39 2.79 3.37 3.37 2.25
Australian 0.94 5.36 4.91 5.37 6.16

Pima-Indian 0.31 4.67 5.2 4.91 3.83

Table 1.12: Comparison between PVM, LSTSVM, TSVM,
GEPSVM, PSVM on the UCI ML datasets on the RBF kernel.

number of runs.

Table 1.11 shows the results using the RBF kernel. PVM

has the most data sets on which it obtains the best results. It

is important to note that PVM produces the best results for the

largest datasets, where the statistical information gains more and

more relevance. What is a bit surprising is that one of the small-

est datasest, Hepatitis, also produces a win. Examining the runs

on this dataset shows that most of the trainings would degener-

ate into zero average deviation, showing that this case is worth

discussing.

Table 1.12 shows the standard deviations for the results of the

classifiers. It is important to note that the standard deviations

for PVM are usually much lower than the other classifiers, with

the exception of Hepatitis. This indicates that, for different folds

of a tenfold, the result of the training is very similar, resulting

in roughly the same accuracy when testing using the developed

model. It is an argument for the stability of the classifier.
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